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Generalized Casimir operators of solvable Lie algebras with
Abelian nilradicals*

J C Ndogmo and P Winternitz

Centre de Recherches Mathématiques, Université de Montréal, CP 6128-A, Montréal, Québec,
Canada H3C 37

Received 6 January 1994

Abstract. A solvable complex Lie algebra L, of dimension N, with an Abelian nifradical of
dimension r is shown to have precisely 2r — NV generalized Casimir invariants (we always have
r 2 N/2). They are constructed as invariants of the coadjoint representation of L and depend
only on variables dual to elements of the nilradical. Their form, in general, involves logarithms
of these variables in addition to rational and irrational functions. They give rise to genuine
Cagimir operators whenever they happen to be polynomials.

Résumé

Nous montrons qu’une algébre de Lie L complexe résoluble de dimension & avec nilradical abélien de dimension
r a précisément m = 2r — N invariants de Castmir généralisés (on a toujours » = N/2). Hs sont calcnlés
comme invariants de la représentation coadjointe de L et dépendent seviement de variables duales aux éléments
du nilradical. Leur forme implique, en général, non seulement les fonctions rationnelles ou irrationnelles des
variables, mais aussi des logarithmes. Ces invariants engendrent des vrais operateurs de Casimir seulement dans
le cas ol ce sont des polynfmes,

1. Introduction

The purpose of this paper is to present some results on the Casimir invariants and generalized
Casimir invariants of an r-dimensional solvable Lie algebra L over € with an Abelian
nilradical (NR). Use will be made of a recent article [1] in which we obtained a classification
of such Lie algebras and presented the general form of the commutation relations.

Casimir invariants (or Casimir operators) are polynomials in the enveloping algebra of
a Lie algebra that commute with all elements of the Lie algebra. In other words, a Casimir
invariant of a Lie algebra is an element of the centre of the enveloping algebra.

Casimir operators play a fundamental role in physics in that they represent important
physical quantities in quantum mechanics such as angular momentum (the Casimir operator
of O(3)), arelativistic elementary particle’s mass and spin (Casimir operators of the Poincaré
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2788 J C Ndogmo and P Winternitz

group) or the Hamiltonian of a particle undergoing geodesic motion (Casimir operator of
the corresponding isometry group).

The Casimir operators of a Lie algebra L can be calculated directly as polynomials in
the basis elements X; € L, commuting with all X;. More efficiently, they can be calculated
as invariants of the coadjoint representation of the corresponding Lie algebra [2, 3].

The Casimir operators of semi-simple Lie algebras are well known. Their number is
equal to the rank of the considered Lie algebra [4-10]. Moreover, for a semi-simple Lie
algebra L, all invariants of the coadjoint representation can be expressed as functions of
m(=rank L) homogenecus polynomials.

For Lie algebras L that are not semi-simple, in particular for solvable Lie algebras,
the situation is less clear. First of all, invariants of the coadjoint representation are not
necessarily polynomials. They may be rational functions, or even irrational or transcendental
ones. Their form and their number is, in general, not known.

Methods for calculating the polynomial and other invariants for arbitrary Lie algebras
have been proposed [11-14]. One method is an infinitesimal one; it has been applied to
low-dimensional Lie algebras [14], to subalgebras of the Poincaré Lie algebra [15] and to
solvable Lie algebras with Heisenberg algebras as NRs [16]. Another method is a global
one, making use of an explicit realization of the coadjoint representation of a Lie algebra
[17]. This has been applied to affine Lie algebras (semi-direct sums of simple Lie algebras
with Abelian ideals) [17]. '

In the representation theory of solvable Lie algebras, polynomial and non-polynomial
invariants in the coadjoint representation appear on the same footing: they characterize
irreducible representations. Casimir operators in the enveloping algebra correspond to
polynomial invariants. The functions of the infinitesimal operators, corresponding to the
non-polynomial invariants, will be called ‘generalized Casimir operators’. In the study of
the integrability of classical Hamiltonian systems, integrals of motion do not have to be
polynomials in the dynamical variables [18, 19].

We feel that there is ample physical motivation for studying non-polynomial invariants
on the same footing as polynomial ones.

2. Formulation of the problem and general results

2.1. Structure of the Lie algebra and its realization by differential operators

We are interested, in this paper, in finite-dimensional indecomposable solvable Lie algebras
L with Abelian NRs [20,21], considered over the field of complex numbers C. In our
previous paper {1] we have shown that such Lie algebras have the structure

L=F+4nNR [F, F1S NR [F,NR] C NR [NR, NR] = 0. (2.1}

The subspace F is a factor-algebra, i.e. a Lie algebra modulo the nilradical. It is a Lie
algebra only if we have [F, F1=0.
We can always choose a basis

[X{,...,Xf,N],...,Nr} f+?'=N N=dimL (2.2)

such that the commutation relations are §1]
[Xe» N1] Ny
. =Aa v

: : IgagfEr (2.3a)
[Xq, Nr N;
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[N, NI=0  ikj=1,...,r (2.36)
[Xe- Xgl=RN,  wf=1...f
[A%, AP1=0 (2.3¢)

(thus Ny, ..., N, is a basis for the nilradical). For f > 3, the commuting matrices
A% g€ €™, and the constants Riﬁ, obey relations following from the Jacobi identities
for the elements {Xy, X, N;}, namely

RIgAL + R] Af + RE A% =0, (2.4)

The commuting matrices A, are linearly nilindependent: no non-trivial linear combinations
of these are nilpotent matrices. We shall call the matrices A* the ‘structure matrices’.

In order to calculate the generalized Casimir operators of the Lie algebra L, we shall
work on the dual of L. We consider smooth functions

Fix;,...,xs00,...,0,) (2.5)

where x, and n; are ordinary {commuting) variables on the space L*, dual to L, and the
differential operators N; and X, realizing the coadjoint representation of L, are

i = —(A)umd,, 2.6)

Xo = (A")umdy, + REn;8,,. Qn
It is easy to check that N; and jfa satisfy the same commutation relations as the Lie afgebra
elements n; and x, of equation {(2.3).

The function F of equation (2.5) will be an invariant of the coadjoint representation of
L if it satisfies the following linear first-order partial differential equations

NiF=0 i=1,...,r (2.8a)
X, F=0 e=1,..., f. (2.85)

Our aim is to find a complete set of elementary solutions to equation (2.8). These
elementary invariants will be called generalized Casimir invariants. Whenever they are
polynomials, we can replace the variables x, and n; in F by the corresponding elements of
the Lie algebra X, and N; and obtain, possibly after some symmetrization, an element of
the centre of the enveloping algebra of L. Thus, generalized Casimir operators reduce to
ordinary ones if they are polynomials.

2.2. General form of the generalized Casimir invariants and their number

Theorem I. The solvable Lie algebra L over the field C satisfying the commutation
relations (2.3) has exactly

m=r—f=2r—N 2.9
functionally independent generalized Casimir invariants
Ci=Ci(ny, ..., Ry) i=1,...,m (2.10)

and they depend only on the variables »;, dual to the elements of the nilradical NR(L).
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Proof. The general invariant F(x1,...,%s,m,...,n,) must satisfy equation (2.8}, in
particular,
-~ f I
NiF=-3 3 Amd, F=0 i=1,...r 211
a=1 k=l

Since the matrices A” commute and are linearly nilindependent, they can be simultaneously
transformed to their Kravchuk normal form [22,23] (involving no nilpotent elements). As
pointed out earlier [1], this means that the matrices A® can all be simuitaneously written in
the block diagonal form

T#(ah)
T%(a%)
o _ P \“p
A 7%, (2.124)
Tpeg (O
a}" 0
T ad) = € O (2.12b)
* a}’
EH 1</ f Y =n 1S f<p<r
agf=1eC fF+1<j<p (2.12¢)

=0 ptlsj<p+yg I<a<f ptgsr

(the star in equation (2.12b) denotes arbitrary entries). From equation (2.9) and (2.10) we
see that we have

Ny = —midy
Nbl = ~Rr10y0 s (2.13)
Nr|+r2+-"+rf-|+l = —fy ittty a):;-

Equations (2.11) and (2.13) imply that the invariant F, and hence the elementary invariants
C;, do not depend on xi, ..., Xy, as indicated in equation (2.9).
Now, consider equation (2.85) which simplifies to

,
XoFlry,ccomy =Y (Aamd, F=0  a=1,..,f (2.142)
k=1

Equation (2.14a) can be rewritten in matrix form as

On, F 0
M( : ):() (2.14b)
B, F 0

From equation (2.12a) we see that the matrix M has maximal rank at every point of the space

N ={nj,...,n,}. Thus, we have f independent equations for a function of r variables.

The number of independent solutions is, hence, m = r — f, as stated in equation (2.9).
This completes the proof. O



Generalized Casimir operators 2791

Notice that the structure constants R;'ﬂ of equation (2.356) play no role in the calculation
of the Casimir invariants.

We mention that theorem 1 is also valid over the field F = R. The proof is quite
analogous, but involves the usual complications due to the fact that the field R is not
algebraically closed and, hence, the normal forms of commuting matrices can be more
complicated.

The generalized Casimir invariants (2,10} are thus a complete set of r — f functionally
independent solutions of equation (2.14). They are best obtained by solving the
corresponding characteristic system of ordinary differential equations

dny dns dn,

== = = =1..,f 2.15
Al Agmy Afpny “ d @19

The actual form of the invariants depends on the dimension f of the factor algebra F
and on the specific form of the matrices A%, The invariants are basis dependent.

Let us now consider some special cases in appropriate bases. They display all the
characteristics of the general case.

3. Diagonal structure matrices

The simplest case, for any values of f and r, occurs when all the sfructure matrices A* are
diagonal (for an appropriate choice of the basis in the NR). By linear combinations of the
elements X, C F, we can transform the structure matrices to the form

1 ' 0
o \ °

A= Ay
] an
K alr—f} \ a_ff—f)
3.1
The r — f invariants can be chosen to be
I =nf+kn]_a'*n2_a“...n;aﬂ‘ k=1,....,r—f (32)

Thus, I are all rational if the eigenvalues g; are rational.

4, Casimir invarianis in the case f =1

Let us consider the Lie algebra L over the field C for the case f = 1. The algebra L
has a basis {X, Ny, ..., N.}, where X is the only element of the basis not contained in the
nilradical. The commutation relations in this case are

[X, Ni] = AuNy [Ni, Nel=0. 4.1
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By a change of basis in the NR and by multiplying X by a non-zero constant, we can always
take the matrix A to its Jordan canonical form. We shall take each block as lower triangular
and normalize its first eigenvalue to be ; = 1.

Thus we put
JJ‘] (a))
Jrn (@)
A= " .
7, (0) 4.2a)
I (0

a
1 a

Jgla) = e LT (4.2b)

1 a
a; =1 a; #0 rpzl pi =2 j=1....M i=1,...,.K

rj+ZP5=T-

1 i=1

M
Mzl K20

J

There will always be (r — 1) Casimir invariants and they satisfy just one partial
differential equation, namely

XFm.n,....n)=0. (4.3)
The operator X, representing x € L, can be read from the matrix A. We have
. M ) 7 K &
X = Z [aj Zn“f"""ka"'j—lﬂ + va”z-l'i"“]a"’;-l“} + Z Zn’%-l*'”‘_]a"rt-lm (4.4)
i=t k= k=2 k=1 m=2

where we have put

R (4.5)
Ik=SH+pr =5y k=1,..., K.
b=1

Before treating the general case with A as in equation (4.2), let us first present two auxiliary
results for cases when A is indecomposable.

Lemma 1. Consider the nilpotent Lie algebra Ly = {X, N, ..., N;} with commutation
relations as in equation (4.1) and with

0
A= .. e T (4.6)
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The algebra Lo has r — 1 Casimir invariants that are all homogeneous polynomials,
namely

.I; =M (47{1)

k-2
B e .
Ikzgﬁ(—l)’nf I (DR - DRs 2<k<r— 1 (4.75)

Proof. The operator X of equation (4.4) simplifies to

Xo= by, +--+n,13,,). (48)
Clearly we have :7?0 Li =0,k =1,...,r — 1, for all expressicns (4.7). To see that
I, ..., I_y are functionally independent, we calculate the Jacobian
Ly, . L)
J ==t 4.9)
3y, ... my)
It has the form
| 0 0 0 0 0
2?1,3 —2!!2 2!.'11 0 0 0
* * x  3lgz 0 0
J= * * ® * 4‘n? 0 4.1
* * % . (r=Di?
so that we have rank J =r — 1, as required. O
Lemma 2. Consider the solvable non-nilpotent Lie algebra L = {X, Ny, ..., N} with

commutation relations (4.1) and A as in (4.2b) with ¢ = r. The r — 1 generalized Casimir
operators of L are

L =a2 _lagm) 4.11a)
Ry

R, = k=2,...,r—1 (4.11b)

k (nl)" T . .

Proof. The operator ¥ of equation (4.4) reduces to

r
X=D+X, D=3 nd, (4.12)
Jj=1

with fo as in equation (4.8). We have

kI kI
XL; =0 XRp=—— — —— =
‘ T F T ot

so equations (4.11) defines invariants. The Jacobian J of equation (4.9} again has the
triangular form (4.10) so that its rank is r — 1. (N
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It is now clear that the invariants in the general case with A as in equation (4.2) will,
in general, be of four types:

(i) invariants of the type {4.11), associated with indecomposable non-nilpotent Jordan
blocks:

(ii) invariants of the type (4.7), associated with indecomposable nilpotent Jordan blocks;

(iii) invariants involving block 1 and the blocks r;,2 € j < M; and

(iv) invariants involving block 1 and block py, ] €k < K.
Indeed, to solve equation (4.3) we must solve the system of characteristic equations

dny  dnz _ dng _dnyg _ dn 42 _
m mtn Bp-1F0y  Galingr Bl 32042
. d"r1+r: - — dn-‘Hnr-z . _ dn5M+F| —
Ry er—1 T G20 R4l Rypetpr—1
dnr 2 dn: +
— k1 =... .= =1 Pk . (4‘13)
Np i+t Ry (-1

We have r independent equations to solve. The strategy is:

{i) to solve equations within each block {this yields invariants of the type (4.7) or (4.11));
and

(ii) to connect all the blocks to block 1 in the simplest possible manner. We choose

dn:,._l-H — % dny_i42 — %

(4.14)
Aifls 141 Ry Mg+l ni
to obtain M — 1 ‘quasirational’ invariants
Mg +1 R
Qyuwr =g I=2 o M (4.15)
and K ‘logarithmic’ invariants
Lyjv2= 22 _lnn, k=1,...K (4.16)

Ry 41

(s; and ¢, are defined in equation (4.5)). We call Q;, 4 quasirational because g; is not
necessarily a rational number. Even so, ratios of the type Q; _,+1/{Qs,_+1 may be rational.
The results can now be summarized as a theorem.

Theorem 2, Let L be a solvable non-nilpotent Lie algebra satisfying the commutation
relations (4.1) with A as in equation (4.2). The r — I functionally independent invariants
can be obtained as follows.

(i) Each non-nilpotent block J, (g;) in A provides (r; — 1) invariants, namely

n vy -1+2
Ly 42 = a,.ni—‘:l ~ In(ng, 1) (4.174)
=1
I et ,
Ry ist41 = ﬁ 1< <M, 2€L< (4.17h)

where I;,_ is as in equation (4.7b), after an appropriate relabelling of »;.

Ff41
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(i) Each non-nilpotent block Jj, (g;), combined with J,, (1), provides one more invariant,
namely @y 41 of equation (4.15).
(iii) Each nilpotent block Jy, (0) in A provides p; — 1 polynomial invariants

Py 41 = Ry {4.18a)
Py et = Iy g1 1€k K, 28— 1. (4.18b)

(iv) Each nilpotent block J,, (0), combined with block J, (1), provides one further
invariant, namely L, ;2 of equation {4.16).

Progf. The fact that expressions (4.15)—(4.18) provide invariants was proven above. That
all » — 1 of them are functionally independent is seen by calculating the Jacobian (4.9). Its
rank is r — 1. 0

Corollary of theorem 1.

(i) If A is diagonal, then all invariants are of the type (4,15}, They are polynomials if,
and only if, all eigenvalues a; are rational and of the same sign.

(il) In all other cases, at least one of the invariants is logarithmic: one of the type
(4.17a) for each r; 2 2 and one of the type (4.16) for each nilpotent block present.

Example. Consider the case with » = 13 when the matrix A has the form (4.2} with
M=4, K=2,r| =r2=1,r3=2,r4=4, F 251 =2,p2=3.

Invariants of the type (4.17a) come from blocks 2 and 3 while (4.178) comes from
block 4 only

Ry
Ly=a3— ~1nn
Rz

n
L= a4—6 —Inn;
hs
2 — (ng)?
R, = 2111 2( 6)
(ns)
Gngng — bnsnght + Zn%
Rs = L
{(ns)

Invariants of the type (4.15) are

n3 N3 R3
0= e O3 = e Qs e

Invariants of the type (4.18) come from blocks 5 and 6 and are
Py =ng Piy = 2nyyny — nd, Py = nyy.
Invariants of the type (4.16) are

n 12
Lm:ﬁ—lnnl Lig=——Inn.
ng 711

Notice that the subscripts of the invariants go from 2 and 13 so that, for example, ng is first
introduced in Rg.
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5. Casimir invariants for low-dimensional nilradicals

In section 4, we considered the case of the largest possible nilradical of a solvable non-
nilpotent Lie algebra, namely the case f = 1. Now we shall consider the opposite situation,
when the factor algebra F ~ L/NR is large, namely f =r,r—1 and r — 2.

5., f=r

The case f = r is only possible (over C) if the algebra L satisfies dimL = 2 or is
decomposable into a direct sum of two-dimensional solvable Lie algebras [1]. The algebra
L, in this case, has no Casimir invariants at all (see equation (2.9) of theorem 1).

52 f=r—1

We have r — 1 linearly nilindependent commuting matrices A;,..., A,—; € €™, Hence,
they will form a subalgebra of a decomposable MaSA of gl(r, C). Only two decompositions
of r are allowed by the condition of linear nilindependence, namely r one-dimensional
blocks (i.e. all matrices A; diagonalizable) or one two-dimensional block and (r — 2)
one-dimensional blocks.

In this case we have the following result.

Theorem 3. Let L be an indecomposable solvable Lig algebra of dimension 2r — | with an
Abelian nilradical of dimension r. Then L has precisely one generalized Casimir invariant
that, in an appropriate basis, has one of the following two forms.
(i) If the matrices A; of equation (2.3} are simultaneously diagonalizable, we have
F=nfng.. .nfinl, (5.1a)

(ii} If the matrices A; are not simultaneously diagonalizable, we have

= SE ~In{n%n® ... n%1). (5.1b)
1

In case (i) the constants a, € C are eigenvalues of the structure matrices A,. In case (ii)
they are the off-diagonal elements of the structure matrices.

Progf. It suffices to note that in case () all matrices A, can be written as
Ay =diaglber, ..oy Baro1) Ga) a; € C, box = b (5.2)
Reading the operators .3?‘, from equation {2.14), in this case we see that they all annihilate

the invariant (5.1a).
In case (ii}) we can choose

. by, 0
Aq=d1ag((a: bﬂ)’c"s""’c"") a=1,...,r~1 53)
b,, =5,_-,1 Caj =ajq_1 Gy e,

Again, all the corresponding operators 5{‘0, will annihilate the ‘logarithmic’ invariant I of
equation (3.15). |
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53 f=r—2

In this case, the matrices A, € C"” again form a decomposable MASA of gl(r, C) and four
different decompositions are allowed. Let us state the results as a theorem.

Theorem 4. Let L be an indecomposable solvable Lie algebra of dimension 2r — 2 with
Abelian nilradical of dimension r. The structure matrices {A,} and invariants {1, I} have,
in the appropriate basis, one of the following forms.

Case 1. Decompositionr =r X 1

Ag = diag(cal .- . Cur-2, Qs ba) Caj = 8yj ay, by € C.
Then
L =(@nyny. .. a,_z}(nr 07!
(5.4)
L= (nb] ny .. f:zz)(nr)—l
Case 2. Decompositionr =2+ (r —2) x 1
. 0
A&‘=dlag [(;Z cm) :btx3p"-,b0£r—|1am]
1
€y = 0 e =10 2agsr—2 ay = C
b&'j=3ja+1 j=3,...,r—1f01'(.'[=1
buj= ) j=3,...,l’f0['61=0
where y, € C, at least one ¥y, satisfies y, 5% 0. For ¢; = 1 we have
= (gt )
(5.5a)
L= —In(n]'ny ... 0} 1)
n
For ¢; = 0 we have
I] = nl
(5.56)

I =ny—nilnny'n) .. .02,

Case 3. Decompositionr =24+2+(r —4) x 1

o a, 0 by 0
Ad_dlag[(yg aa)-l(za ba)acajr---qfar}

ap = &y by = 82 Cop = O ,at2 3Kk

where y,,zy € C, At least one y, and one zz satisfies y, # 0, 25 #0.
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In this basis the invariants are

na
I == —In@mn}n} .. i)
y

4 (5.6)
Iy = — —In(nf'ani .. .n¥).
n3
Case 4. Decomposition r =34 (r —3) x 1
Ay
A¢=diag l:(u,, aa ) ’bﬂ4s ...,bar}
Yo o Gy
Gx = 81 Brg = 811 4<kgr,
The complex constants ug, ¥, and z, satisfy one of the following conditions.
(i) g = Zo forall & uy = z4 5 0 for at least one value of «.
(i) 2 =0 for all @. yg 3£ 0, z, 5 O for at least one value of 8 and y.
(iit) zo = 0 for all .yg # 0, u, # O for at least one value of 8 and y.
The invariants in this basis are
I = 2 _ Inni'ng’ ... 0
h
n\* 5.7
L= )’r-z— - uruz— += Zr—~2 ( ) 57
n
+ In[ngur—n’l-”l}’r-z)ngur—z}'l_ﬂz)’r-z) . n(“r;!}'r—s-ur-.!,‘r'r-l)].

Proof. The proof is the same in all cases. The operators X, of equation (2.7) are read from
the matrices A, given in theorem 4. It is then easy to verify that we have X I = Xa L =

for all & in ali cases. It is obvious from the form of J; and J, that they are functmnally
independent. Conditions (i), (ii) or (ili} in case 4 are necessary to ensure commutativity of
the matrices A%. Cases (i), (ii) and {iii) correspond to Kravchuk signatures (111), (201) and
(102), respectively. O

6. Conclusions

The main results of this paper can be summed up as follows,

(1) A solvable Lie aigebra L, over the field C, of dimension N, with an Abelian nilradical
of dimension r(r 2= N/2), has precisely m = 2r — N generalized Casimir invariants. All
of them are functions of the variables #;, dual to the elements of the nilradical (theorem 1).

(ii) The generalized Casimir invariants, in general, involve logarithms of polynomials
in n;, as well as rational and irrational functions of »; (theorems 2, 3 and 4).

(iif) Explicit expressions for the generalized Casimir operators were given for special
cases when the dimension of the nilradical is equal or close to its minimal (or maximal)
possible value.

{(iv) The generalized Casimir operators are rational functions only in the very special
case when all the structure matrices A% of equation (2.3) are diagonal and the eigenvalues
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satisfy certain rationality conditions. Logarithmic expressions occur as soon as any of the
structure matrices contain non-trivial Jordan blocks. The general form of the invariants is

_ PO,....n,)
- Q(nh--'!nr)

where P and Q are homogeneous polynomials and o, are complex constants. This was
proven in all considered cases and we conjecture that the same is valid for all values of f
and r and all standard forms of the structure matrices 4,.

Let us mention that the results depend heavily on the fact that the nilradical is Abelian.
Indeed, for solvable Lie algebras with Heisenberg nilradicals, the invariants depend not only
on the elements r; but also on all elements of the Lie algebra [16]. Moreover, they are all
rational and in some cases polynomial [16]. Similarly, the results will be quite different,
for instance, in the case of the solvable Lie algebra of all (upper) triangular matrices.

As an example, take the Lie algebra of matrices

I +1In(a", 03, ..., 1% 6.1

ar X2 X3 X4

a2 X3 Xy
M= 6.2
a1 X34 ©2)

ay

{N = 10,r = 6). Applying the methods used in this paper we find two invariants (one
polynomial, the other rational), namely

h=aq+at+ata

_ (a1 + as)x1a + X12%04 + X13x34 (6.3)
X4 '

I

Both depend on the elements of the nilradical x;;, and of the space L/NR, ie. ;.
To illustrate the complications arising over the field of real numbers, consider a four-
dimensional Lie algebra of the form (2.3) with

a 1
A=(—1 a ) a,belR. (6.4)
b

Obviously, A is diagonalizable over C but not over R. In agreement with theorem 1 (valid
also for F = R), we have two invariants, both depending on (n1, 2, n3) only. However,
their form is
I = (nf +n3)’/n3 65)
I = In(n? + 22) + 2z tan~ (nz /). '

Thus, in addition to rational and irrational functions and logarithms, we obtain inverse
trigonometric functions.

The results and methods of this paper can be used to calculate the generalized Casimir
invariants of any solvable Lie algebra L with an Abelian nilradical once the dimensions
N and r are fixed, Moreover, the algorithm could be computerized in an efficient manner,
making use of a differential Grobner basis [24, 25], to solve the simultaneous sets of linear
differential equations that arise,

Work on the classification of solvable Lie algebras with other types of nilradicals and
their invariants is in progress.
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