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Generalized Casimir operators of solvable Lie algebras with 
Abelian nilradicals" 

J C Ndogmo and P Winternitz 
Centre de Recherches Mathematiques. Universite de Montreal, CP 6128-A, Montr6al. Quebec, 
Canada H3C 3J7 

Received 6 January 1994 

Abstract. A solvable complex Lie algebra L, OF dimension N, wilh an Abelian nilradical of 
dimension r is shown to have precisely 2r - N generalired Casimir invariants (we always have 
I 2 N j Z ) .  They are constructed as invariants of the madjoint representation of L and depend 
only on variables dual to elements of the nilradical. Their farm, in general, involves logarithms 
of these variables in addition to rational and imtional functions. They give rise to genuine 
clsimir operators whenever they happen to be polynomials. 

RBsumB 

Nous montrons qu'une algbre de Lie L mmplexe rLsoluble de dimension N avec nilradical abdlien de dimension 
r a pdcisement m = 2r - N invariants de Casimir gen6ralises (on a toujow I 2 N / 2 ) .  Ils sont calcules 
con"  invariants de la representation coadjointe de L et dependent senlement de variables dudes aux el6ments 
du nilradical. Leur forme implique. en general, non seulement les Fonctions rationnelles ou irrationnelles des 
variables. mais aussi des logarithms. Ces invariants engendrent des vrais operateurs de Casimir seulement dans 
le cas oh ce sont des polynKmes. 

1. Introduction 

The purpose of this paper is to present some results on the Casimir invariants and generalized 
Casimir invariants of an n-dimensional solvable Lie algebra L over C with an Abelian 
nilradical (NR). Use will be made of a recent article [I] in which we obtained a classification 
of such Lie algebras and presented the general form of the commutation relations. 

Casimir invariants (or Casimir operators) are polynomials in the enveloping algebra of 
a Lie algebra that commute with all elements of the Lie algebra. In other words, a Casimir 
invariant of a Lie algebra is an element of the centre of the enveloping algebra. 

Casimir operators play a fundamental role in physics in that they represent important 
physical quantities in quantum mechanics such as angular momentum (the Casimir operator 
of 0(3)), a relativistic elementary particle's mass and spin (Casimir operators of the Poincar.4 

* The research of one of the authors (PW) was partially supported by research grants from NSERC of Canada and 
FCAR du Quebec. 

Ce rapport a kt6 publid en partie @e A des subventions du Fonds pour la formation de chercheurs et I'aide h la 
rechercher (Fonds FCAR) et du Conseil de recherches en sciences MNEU~S et engenie du Canada (CRSNG). 

0305-4470/94/082787+14$19.50 @ 1994 IOP Publishing Ltd 2787 



2788 

group) or the Hamiltonian of a particle undergoing geodesic motion (Casimir operator of 
the corresponding isometry group). 

The Casimu operators of a Lie algebra L can be calculated directly as polynomials in 
the basis elements Xi E L, commuting with all Xi. More efficiently, they can be calculated 
as invariants of the coadjoint representation of the corresponding Lie algebra 12-31, 

The Casimir operators of semi-simple Lie algebras are well known. Their number is 
equal to the rank of the considered Lie algebra [4-10]. Moreover, for a semi-simple Lie 
algebra L,  all invariants of the coadjoint representation can be expressed as functions of 
m(= rank L) homogeneous polynomials. 

For Lie algebras L that are not semi-simple, in particular for solvable Lie algebras, 
the situation is less clear. First of all, invariants of the coadjoint representation are not 
necessarily polynomials. They may be rational functions, or even irrational or transcendental 
ones. Their form and their number is, in general, not known. 

Methods for calculating the polynomial and other invariants for arbitrary Lie algebras 
have been proposed [ll-141. One method is an infinitesimal one; it has been applied to 
lowdimensional Lie algebras [14], to subalgebras of the Poincard Lie algebra [ I51  and to 
solvable Lie algebras with Heisenberg algebras as NRs [16]. Another method is a global 
one, making use of an explicit realization of the coadjoint representation of a Lie algebra 
[17]. This has been applied to affine Lie algebras (semi-direct sums of simple Lie algebras 
with Abelian ideals) [17] .  

In the representation theory of solvable Lie algebras, polynomial and non-polynomial 
invariants in the coadjoint representation appear on the same footing: they characterize 
irreducible representations. Casimir operators in the enveloping algebra correspond to 
polynomial invariants. The functions of the infinitesimal operators, corresponding to the 
non-polynomial invariants, will be called ‘generalized Casimir operators’. In the study of 
the integrability of classical Hamiltonian systems, integrals of motion do not have to be 
polynomials in the dynamical variables [18,19]. 

We feel that there is ample physical motivation for studying non-polynomial invariants 
on the same footing as polynomial ones. 
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2. Formulation of the problem and general results 

2.1. Structure of the Lie algebra and its realiurrion by differential operators 

We are interested, in this paper, in finite-dimensional indecomposable solvable Lie algebras 
L with Abelian NRS [20,21], considered over the field of complex numbers C. In our 
previous paper [ 11 we have shown that such Lie algebras have the structure 

L = F + NR [F, F] E NR [ F ,  NR] C NR [NR, NR] = 0. (2.1) 

The subspace F is a factor-algebra, i.e. a Lie algebra modulo the nilradical. It is a Lie 
algebra only if we have [F, F] = 0. 

We can always choose a basis 

(X, ,..., X ~ , N I  ,..., Nrl f + r = N  N = d i m L  (2.2) 

such that the commutation relations are [l]  

[ X ~ , N I I  

[Xu, NrI NI 

( j I $ c u < f < r  (2.3a) 
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[N;,Nk]=O i , k , j = l ,  ..., r (2.36) 

(2.3~) 

(thus N I , .  . . , N, is a basis for the nilradical). For f > 3, the commuting matrices 
A' E CrXr ,  and the constants R$. obey relations following from the Jacobi identities 
for the elements [X,, X , ,  N,), namely 

R L ~ A ; ~  + R ; & ~  + R ; , A ~ ~  = 0. (2.4) 

The commuting matrices A, are linearly nilindependent: n o  non-trivial linear combinations 
of these are nilpotent matrices. We shall call the matrices Ae the 'structure matrices'. 

In order to calculate the generalized Casimir operators of the Lie algebra L ,  we shall 
work on the dual of L .  We consider smooth functions 

F ( x t , .  . . , x f . n l , .  . . ,n,) (2.5) 

where x. and nj are zdinary-(commuting) variables on the space L', dual to L, and the 
differential operators Ni and X,, realizing the coadjoint representation of L, are 

Gj = -(Aa)nnka, (2.6) 

x, = ( A a ) ; k R k & ,  -I- R;njaX,,. (2.7) 

satisfy the same commutation relations as the Lie algebra 

The function F of equation (2.5) will be an invariant of the coadjoint representation of 

G F = O  i = 1 ,  . . . ,  r (2.8a) 

F a F = O  a =  1, . . . , f .  (2.86) 

Our aim is to find a complete set of elementary solutions to equation (2.8). These 
elementary invariants will be called generalized Casimir invariants. Whenever they are 
polynomials, we can replace the variables x, and ni in F by the corresponding elements of 
the Lie algebra X ,  and Nj and obtain, possibly after some symmehization, an element of 
the centre of the enveloping algebra of L.  Thus, generalized Casimir operators reduce to 
ordinary ones if they are polynomials. 

2.2, General form of the generalized Casimir invariants and their number 

Theorem I .  
relations (2.3) has exactly 

A 

It is easy to check that G; and 
elements ni and x, of equation (2.3). 

L if it satisfies the following linear first-order partial differential equations 

The solvable Lie algebra L over the field C satisfying the commutation 

m = r -  f = 2 r - N  (2.9) 

functionally independent generalized Casimir invariants 

Cj = C,(n , ,  . . . , n , )  i = 1, .. , .m (2.10) 

and they depend only on the variables nj ,  dual to the elements of the nilradical NR(L). 
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Proof. The general invariant F ( x 1 . .  . . , x f , n ~ .  . . . ,n , )  must satisfy equation (2.8), in 
particular, 
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f r  

cr=l ki 
$ F = - ~ ~ A $ n & F = O  i =  I ,  .... r. (2.11) 

Since the matrices A' commute and are linearly nilindependent. they can be simultaneously 
transformed to their Kravchuk normal form [22,23] (involving no nilpotent elements). As 
pointed out earlier [I]. this means that the matrices A' can all be simultaneously written in 
the block diagonal form 

(2.12a) 

(2.126) 

l < j < f  xj':: r, = r. I < f < p < r , E @  f + I < j < p  (2.1 Z C )  1 = O  p + l < j < p + q  I < o l < f ,  p + q S r  

a! = 

(the star in equation (2.12b) denotes arbitrary entries). From equation (2.9) and (2.10) we 
see that we have 

N ,  =-ma,, - 
N , , + ~  = -nr ,+ laz2 , .  . . , (2.13) 

N,, +rtt... trI-I + I = -nr,  +,%+. . .+,I-, + a, . 
Equations (2.1 1) and (2.13) imply that the invariant F, and hence the elementary invariants 
Ci, do not depend on xI, . . . , xf, as indicated in equation (2.9). 

Now, consider equation (2.8b) which simplifies to 

z c F ( n , ,  . . . , n,) = r ( A u ) i k n x a n , F  = 0 01 = I , .  . . , f. (2.14a) 
i.k=l 

Equation (2.140) can be rewritten in matrix form as 

a,, F 
(2.14b) 

From equation (2.1241) we see that the matrix M has maximal rank at every point of the space 
N = I n ] , .  I ,, n r ] .  Thus, we have f independent equations for a function of r variables. 
The number of independent solutions is, hence, m = r - f ,  as stated in equation (2.9). 

This completes the proof. U 
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Notice that the structure constants R i p  of equation (2.36) play no role in the calculation 
of the Casimir invariants. 

We mention that theorem 1 is also valid over the field F = 8. The proof is quite 
analogous, but involves the usual complications due to the fact that the field R is not 
algebraically closed and, hence, the normal forms of commuting matrices can be more 
complicated. 

The generalized Casimir invariants (2.10) are thus a complete set of r - f functionally 
independent solutions of equation (2.14). They are best obtained by solving the 
corresponding characteristic system of ordinary differential equations 

(2.15) 

The actual form of the invariants depends on the dimension f of the factor algebra F 

Let us now consider some special cases in appropriate bases. They display all the 
and on the specific form of the matrices Am. The invariants are basis dependent. 

characteristics of the general case. 

3. Diagonal structure matrices 

The simplest case, for any values of f and r ,  occurs when all the structure matrices A" are 
diagonal (for an appropriate choice of the basis in the NR). By linear combinations of the 
elements X, c F ,  we can transform the structure matrices to the form 

(3.1) 

The r - f invariants can be chosen to be 

= n,+kn;"'n;'" . . .n;" k = l ,  ..., r -  f. (3.2) 

Thus, are all rational if the eigenvalues ai are rational. 

4. Casimir invariants in the case f = 1 

Let us consider the Lie algebra L over the field C for the case f = 1. The algebra L 
has a basis {X, N I ,  , . . , N , ) ,  where X is the only element of the basis not contained in the 
nilradical. The commutation relations in this case are 

[ X .  Nil = A i k N k  [ N i ,  NKI = 0. (4.1) 
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By a change of basis in the NR and by multiplying X by a non-zero constant, we can always 
take the matrix A to its Jordan canonical form. We shall take each block as lower triangular 
and normalize its first eigenvalue to be nl = I .  

J C Ndogmo und P Winternitz 

Thus we put 

(4.2b) 

a l = I  a j # O  r j > I  p i > 2  j =  I, ..., M i =  I, ..., K 

There will always be (r - 1) Casimir invariants and they satisfy just one partial 

(4.3) 

differential equation, namely 
A 

X F ( n l , n l . .  . . , n , )  = 0. 

The operator 2, representing x E L, can be read from the matrix A. We have 

where we have put 

(4.5) 

Before treating the general case with A as in equation (4.2), let us first present two auxiliary 
results for cases when A is indecomposable. 

Lemm I .  
relations as in equation (4.1) and with 

Consider the nilpotent Lie algebra Lo = (X, N I ,  . . , , N r )  with commutation 

A =  (4.6) 
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The algebra LO has r - 1 Casimu invariants that are all homogeneous polynomials, 
namely 

XI =nl (4.7a) 

Proof. The operator x̂  of equation (4.4) simplifies to 
A xo = h a , ,  + . . . + n,-] an,). (4.8) 

A 

Clearly we have X o I k  = 0, k = 1,. . . , I  - 1, for all expressions (4.7). To see that 
11,. . . , I,-! are functionally independent, we calculate the Jacobian 

It has the form 

(4.10) 

U so that we have rank J = r - 1, as required. 

Lemma 2. Consider the solvable non-nilpotent Lie algebra L = [ X ,  NI, . . . , N r ]  with 
commutation relations (4.1) and A as in (4.2b) with q = r .  The r - 1 generalized Casimir 
operators of L are 

I 0 0 0 0 ... 0 
2n3 - 2 n 2  2!nl 0 0 . . .  0 

* 3!n: 0 ... 0 
J = [ *  * * * * * 4!n: . _ _  0 

* * 

(4.1 la) nz L I  = a -  - In(n1) 
nr 

k = 2 , .  . . , r - 1. (4.11b) Ik  Rk = - 
( n d k  

Proof. The operator x̂  of equation (4.4) reduces to 

x̂  = D+?@ D = Enjan, 
j= l  

with 2 0  as in equation (4.8). We have 

(4.12) 

so equations (4.11) defines invariants. The Jacobian J of equation (4.9) again has the 
0 triangular form (4.10) so that its rank is r - 1. 
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It is now clear that the invariants in the general case with A as in equation (4.2) will, 

(i) invariants of the type (4.1 l), associated with indecomposable non-nilpotent Jordan 

(ii) invariants of  the type (4.7), associated with indecomposable nilpotent Jordan blocks; 
(iii) invariants involving block 1 and the blocks r,, 2 6 j 6 M ;  and 
(iv) invariants involving block 1 and block p i ,  I < k 6 K. 

in general, be of four types: 

blocks; 

Indeed, to solve equation (4.3) we must solve the system of characteristic equations 

dnt dnz d n ,  
nl nl + n z  Er, - ]  +nr ,  azn,,+l %+I -tazn,,+z 

dnr,+2 - - dnr,+l =-- _=-- - 

(4.13) 

We have r independent equations to solve. The strategy is: 

and 
(i) to solve equations within each block (this yields invariants of the type (4.7) or (4.1 1)); 

(ii) to connect all the blocks to block 1 in the simplest possible manner. We choose 

to obtain M - 1 ‘quasirational‘ invariants 

(4.14) 

(4.15) 

and K ‘logarithmic’ invariants 

(sj and tk are defined in equation (4.5)). We call Qsi-,+l  quasirational because aj is not 
necessarily a rational number. Even so. ratios of the type Qs,-,+l/QSm-,+l may be rational. 

The results can now be summarized as a theorem. 

Theorem 2. Let L be a solvable non-nilpotent Lie algebra satisfying the commutation 
relations (4.1) with A as in equation (4.2). The r - 1 functionally independent invariants 
can be obtained as follows. 

(i) Each non-nilpotent block Jr,(aj) in A provides (rj - I) invariants, namely 

(4.17a) 

(4.176) 

where Z+,,,+, is as in equation (4.7b). after an appropriate relabelling of n,. 
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(ii) Each non-nilpotent block J,, (aj) ,  combined with J , , ( I ) ,  provides one more invariant, 

(iii) Each nilpotent block Jp,(0)  in A provides pk - I polynomial invariants 
namely e,+,+] of equation (4.15). 

PZk.,+i = nrx.,+i (4.18a) 

ptk-,+e+l = Iik.,+!+l (4.lSb) 

(iv) Each nilpotent block JpA(O) ,  combined with block J,,(l), provides one further 

1 < k < K ,  2 < e < Pk - 1 .  

invariant, namely Lib-,+? of equation (4.16). 

Proof. The fact that expressions (4.15)-(4.18) provide invariants was proven above. That 
all r - 1 of them are functionally independent is seen by calculating the Jacobian (4.9). Its 
rank is r - 1. 0 

Corollary of theorem 1. 

and only if, all eigenvalues aj are rational and of the same sign. 

(4.17a) for each rj 2 2 and one of the type (4.16) for each nilpotent block present. 

Example. 
M = 4, K = 2, rj = r2 = 1 ,  r3 = 2, r4 = 4, PI = 2 p2 = 3 .  

block 4 only 

(i) If A is diagonal, then all invariants are of the type (4.15). They are polynomials if, 

(ii) In all other cases, at least one of the invariants is logarithmic: one of the type 

Consider the case with r = 13 when the matrix A has the form (4.2) with 

Invariants of the type (4.17a) come from blocks 2 and 3 while (4.17b) comes from 

Invariants of the type (4.15) are 

Invariants of the type (4.18) come from blocks 5 and 6 and are 

2 PS = ng Pi3 = 2nljn13 - n j 2  PI] =rill 

Invariants of the type (4.16) are 

Notice that the subscripts of the invariants go from 2 and 13 so that, for example, n8 is first 
introduced in R8. 
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5. Casimir invariants for low-dimensional nilradicals 

In section 4, we considered the case of the largest possible nilradical of a solvable non- 
nilpotent Lie algebra, namely the case f = 1. Now we shall consider the opposite situation, 
when the factor algebra F - L/NR is large, namely f = r ,  r - 1 and r - 2. 

5.1. f = r 

The case f = r is only possible (over C) if the algebra L satisfies dimL = 2 or is 
decomposable into a direct sum of two-dimensional solvable Lie algebras [I]. The algebra 
L, in this case, has no Casimir invariants at all (see equation (2.9) of theorem 1). 

5.2. f = r - 1 

We have r - 1 linearly nilindependent commuting matrices A ] ,  . . . , A,-] E @". Hence, 
they will form a subalgebra of a decomposable MASA of gl(r, C). Only two decompositions 
of r are allowed by the condition of linear nilindependence, namely r onedimensional 
blocks (i.e. all matrices Ai diagonalizable) or one two-dimensional block and ( r  - 2) 
one-dimensional blocks. 

J C Ndogmo and P Winternitz 

In this case we have the following result. 

Theorem 3. Let L be an indecomposable solvable Lie algebra of dimension 2r - I with an 
Abelian nilradical of dimension r. Then L has precisely one generalized Casimir invariant 
that, in an appropriate basis. has one of the following two forms. 

(i) If the matrices Ai of equation (2.3) are simultaneously diagonalizable, we have 

I = n;'n:. . .n::in;'. (5.1~) 

(ii) If the matrices Ai are not simultaneously diagonalizable. we have 

(5.lb) 

In case (i) the constants U, E C are eigenvalues of the structure matrices A.. In case (ii) 
they are the off-diagonal elements of the structure matrices. 

Proof. It suffices to note that in case (i) all matrices A, can be written as 

nz 
111 

I = - - In(n'?'n"' nF-1). 1 3 " '  

A. = diag(b,l, ..., be,-], a.J aj E C, b.x = auk.  (5.2) 

Reading the operators Tc from equation (2.14), in this case we see that they all annihilate 
the invariant (5.1~). 

In case (ii) we can choose 

b. = 6,1 c.j = 8+1 a, E C. 

Again, all the corresponding operators ?., will annihilate the 'logarithmic' invariant I of 
equation (5.16). 0 
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5.3. f = r - 2 

In this case, the matrices A, E CrX' again form a decomposable MASA of gl(r, C) and four 
different decompositions are allowed. Let us state the results as a theorem. 

Theorem 4. Let L be an indecomposable solvable Lie algebra of dimension 2r - 2 with 
Abelian nilradical of dimension r .  The structure matrices { A a )  and invariants (Zl, Z?} have, 
in the appropriate basis, one of the following forms. 
Case 1. Decomposition r = r x 1 

A,  = diag(c,l ... &,,A am. be) c., =Se, G, b, E C. 

Case 2. Decomposition r = 2 + ( r  - 2) x 1 

c,=O 2 < c i < r - 2  a,cC 
1 
0 

b.j = SjU+.1 

b,j = 8jU+l  

j = 3 ,  .. . , r  - 1 for cl = 1 

j = 3 , .  . . , r  for CI = 0 

where yu E C, at least one ye satisfies yu # 0. For CI = 1 we have 

For cI = 0 we have 

11 =)I, 

12 = n ,  - nl In(n:'nF.. .nf-'). 

Case 3. Decomposition r = 2 + 2 + (t - 4) X 1 

ai = & I  be = &Z cUk = &,.+z 5 < k < r 

where y~ zar E C At least one ya and one zg satisfies ylr # 0, zg # 0. 

(5.Sb) 
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In this basis the invariants are 

Case 4. Decomposition r = 3 + (r - 3) x I 

A ,  = diag [ (ii ; ,bad, ..., bar] 

a, = & I  bku = &+I 4 < k < r .  

The complex constants U,, y. and z. satisfy one of the following conditions. 
(i) uo, = zI, for all a. uoI = za # 0 for at least one value of 01. 

(ii) U, = 0 for all a. ys f 0, zy # 0 for at least one value of p and y. 
(iii) zar = 0 for all a.yp f: 0, uy # 0 for at least one value of ,3 and y .  

The invariants in this basis are 

It = - - 1nn;'n:. , .n:-' nz 
fll 

Proof. The proof is the same in all cases. The operators Fw of equation (%7) are read from 
the matrices A,, given in theorem 4. It is then easy to verify that we have X.11 = I2 = 0 
for all LY in all cases. It is obvious from the form of J I  and Jz that they are functionally 
independent. Conditions (i). (ii) or (iii) in case 4 are necessary to ensure commutativity of 
the matrices Am.  Cases (i), (ii) and (iii) comespond to Kravchuk signatures (1 I l ) ,  (201) and 
(102). respectively. a 

6. Conclusions 

The main results of this paper can be summed up as follows. 
(i) A solvable Lie algebra L, over the field C, ofdimension N ,  with an Abelian nilradical 

of dimension r ( r  > N / 2 ) ,  has precisely m = 2r - N generalized Casimir invariants. All 
of them are functions of the variables ni, dual to the elements of the nilradical (theorem 1). 

(ii) The generalized Casimir invariants, in general, involve logarithms of polynomials 
in ni, as well as rational and irrational functions of ni (theorem 2, 3 and 4). 

(iii) Explicit expressions for the generalized Casimir operators were given for special 
cases when the dimension of the nilradical is equal or close to its minimal (or maximal) 
possible value. 

(iv) The generalized Casimir operators are rational functions only in the very special 
case when all the structure matrices Am of equation (2.3) are diagonal and the eigenvalues 
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satisfy certain rationality conditions. Logarithmic expressions occur as soon as any of the 
structure matrices contain non-trivial Jordan blocks. The general form of the invariants is 

where P and Q are homogeneous polynomials and at are complex constants. This was 
proven in all considered cases and we conjecture that the same is valid for all values of f 
and r and all standard forms of the structure matrices A,. 

Let us mention that the results depend heavily on the fact that the nilradical is Abelian. 
Indeed, for solvable Lie algebras with Heisenberg nilradicals, the invariants depend not only 
on the elements ni but also on all elements of the Lie algebra [16]. Moreover, they are all 
rational and in some cases polynomial [16]. Similarly, the results will be quite different, 
for instance, in the case of the solvable Lie algebra of all (upper) triangular matrices. 

As an example, take the Lie algebra of matrices 

( N  = 10, r = 6). Applying the methods used in this paper we find two invariants (one 
polynomial, the other rational), namely 

h = a1 + a2 + a3 + a4 

Both depend on the elements of the nilradical xik and of the space LINK i.e. ai. 

dimensional Lie algebra of the form (2.3) with 
To illustrate the complications arising over the field of real numbers, consider a four- 

1 
.=(!I a b )  a , b c R .  (6.4) 

Obviously, A is diagonalizable over C but not over W. In agreement with theorem 1 (valid 
also for F = R), we have two invariants, both depending on (n , ,  nz, n 3 )  only. However, 
their form is 

Thus, in addition to rational and irrational functions and logarithms, we obtain inverse 
trigonometric functions. 

The results and methods of this paper can be used to calculate the generalized Casimir 
invariants of any solvable Lie algebra t with an Abelian nilradical once the dimensions 
N and r are fixed. Moreover, the algorithm could be computerized in an efficient manner, 
making use of a differential Grbbner basis [24,25], to solve the simultaneous sets of linear 
differential equations that arise. 

Work on the classification of solvable Lie algebras with other types of nilradicals and 
their invariants is in progress. 
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